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Complex interfacial dynamics is studied in an oscillatory medium described by a deterministic
coupled-map lattice. This dynamical system supports only stable periodic attractors. The interfaces
that separate the stable homogeneous phases exhibit different types of behavior ranging from simple
planar fronts with low periodicity to highly irregular fronts with complex spatiotemporal transients.
A dynamical analysis of the system is carried out for a small interface length L, in which the
probabilities of occurrence of given periodic orbits, the velocities of the corresponding interfaces,
and Lyapunov exponents are calculated. The importance of transient dynamics for large L is
demonstrated. In the large-L regime the interfacial evolution and structure are characterized in
statistical terms and the simulation results are compared with phenomenological stochastic models
such as the Edwards-Wilkinson and Kardar-Parisi-Zhang equations. In some parameter regions,
the deterministic, transient interfacial dynamics of the coupled-map model is described well by
such models if finite-size effects are taken into account. Nucleation and growth dynamics are also
investigated. The system provides a framework in which to study complex interfacial structures.
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I. INTRODUCTION

Interfaces separating two phases need not be simple
and may exhibit varying degrees of spatial and temporal
complexity. The structure and dynamics of such inter-
faces play an important role in a number of problems,
including those related to the description of solidifica-
tion fronts [1], diffusion-limited aggregation clusters [2],
and chemical wave fronts [3]. When such complex in-
terfaces occur they can give rise to phenomena that are
not present in systems with smooth interfaces. Finger-
ing instabilities and fractal growth processes are com-
mon examples. Often the gross aspects of such interfa-
cial dynamics and structure can be captured by simple
phenomenological models that incorporate the basic ele-
ments of the growth dynamics without reference to the
detailed physics of a particular system. The well-known
and often-studied Edwards-Wilkinson [4] and Kardar-
Parisi-Zhang [5] equations are of this type.

In this article we consider oscillatory media which may
also display complex front propagation and structure [6].
Rather than focusing on a specific physical system we
consider a discrete dynamical model with oscillatory local
elements. The simplicity of the model allows us to carry
out a rather detailed study of the interfacial dynamics.
Here the interface separates two phases of the oscillation.
In spite of its simplicity this model system displays a
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bewildering variety of interfacial structures.

More specifically, the dynamical system studied is a
deterministic, two-dimensional (2D) coupled-map lattice
(CML). The discrete-time maps have the form

vt = {2 s (1)

where u € (0,1). The map parameters a and b can be
tuned to produce dynamics with any integer period n.
The dynamics of an isolated map is extremely simple:
all periodic orbits are superstable due to the existence of
the map branch with zero slope, which must be visited
by any orbit. The coupled-map lattice is

u(z,y,t + 1) = (1 — 4¢) f(u(z,y,t))
e ¥ f@ny), @

(z,¥)EN

where (z,y) are integer lattice-site labels, t is the discrete
time, A is the Von Neumann neighborhood, and € gauges
the strength of the diffusive coupling. (In order for u to
be confined to the unit interval € is always smaller than
1/4.)

Since map (1) shows a simple dynamics and the cou-
pling in (2) is purely diffusive, one might anticipate that
the dynamics of the CML cannot exhibit chaotic proper-
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ties. We shall show that while this is true for the asymp-
totic dynamics of the system, the transient dynamics is
very complex indeed. For instance, in addition to the
commonly encountered types of interfacial dynamics, we
find that in certain parameter ranges waves may propa-
gate in the system with velocities that depend on the
diffusion constant in a nontrivial way, wave-front col-
lision can give rise to nucleation processes that spawn
other phases and the interfaces themselves may become
unstable forming nuclei for other types of growth dynam-
ics. Such features may lead to unusual phase competition
and domain growth and entail a reexamination of nucle-
ation and growth processes that takes into account the
possibly complex interfacial dynamics.

In this investigation we consider a number of general
aspects of interfacial structure and dynamics in the con-
text of this model. By parameter variation we are able
to obtain a wide variety of interfacial structures ranging
from simple, strictly planar fronts to fronts with com-
plicated structure and instabilities. As a result we are
able to consider the applicability of the phenomenolog-
ical models in various regimes and identify some of the
reasons for their breakdown. While our dynamical sys-
tem is deterministic and its attracting states are purely
periodic, the interface often presents stochastic behavior.
Thus our study addresses the broader question of mea-
sures of spatial complexity and the origin of statistical
behavior in deterministic dynamical systems.

In Sec. II we present an overview of the interfacial
structure that arises as the diffusive coupling among the
oscillatory elements is varied. Section III contains a dy-
namical systems analysis of the attracting states for small
interfacial lengths, as well as a study of the nature of
the transients that lead to the periodic attractors. The
detailed characterization of the planar, disordered inter-
faces that exist within a certain parameter range is the
topic of Sec. IV. Various correlation functions and other
indicators of interfacial structure are computed and com-
pared with phenomenological models. The breakdown
of these models for some values of the diffusion cou-
pling is also studied in this section. Nucleation and do-
main growth processes are the subjects of Sec. V. The
growth of a single disk-shaped nucleus of one phase in
a “sea” of another phase is studied and the critical nu-
cleus size is determined. The nucleation-growth dynam-
ics is cast into the form of a first-passage-time problem.
Once again, comparisons with phenomenological models
for such growth processes are made. Section VI presents
a sketch of some results on spiral dynamics and contains
the conclusions of this study.

II. OVERVIEW OF INTERFACIAL DYNAMICS

Our study of interfacial structure and dynamics will
be limited to the case where the map parameters are
a = 1/10 and b = 5/2 and the isolated map has a
period-three orbit: u] = a = A, u} = ab = B, and
uj = ab® = C. We have chosen to work with a stable
period-three orbit since this is the shortest period allow-
ing different relative stabilities between pairs of the var-

ious phases. In fact, period-two is rather special in that
an interface AB is immediately mapped onto BA, i.e.,
they are perfectly symmetric. On the other hand, higher
periods should have much in common with the period-
three case where, since AB — BC — CA — AB, there
is no left-right symmetry [8]. Without loss of general-
ity, we shall always refer in what follows to the interface
between the homogeneous phases A and C.

We focus on interfaces separating two stable phases
generated from initial conditions of the form

uy, if —-N/2<y<-W/2
u(z,y) = {n(ﬂ:,y) if —W/2<y<W/2 (3)
uy, if W/2 <y < N/2,

where z € {1,...,L}, n,m € {1,2,3}, and 7 is a ran-
dom number uniformly distributed on (0,1). Here W
is the width of the initially perturbed interfacial zone
while L and N are the system lengths parallel and per-
pendicular to the interface, respectively. In the simula-
tions we have used periodic boundary conditions along =
(z =1,...,L), i.e., parallel to the interface. Transverse
to the interface, IV is automatically adjusted at each time
step so that the interface is entirely contained in a rect-
angle of size L x (/N +1). In particular, the lattice region
of interest is suitably shifted to follow the translational
motion of the interface. The above algorithm to iterate
the 2D coupled map lattice is essentially equivalent to
using no-flux boundary conditions along the y direction
in a sufficiently wide region. These boundary conditions
ensure that the system has translational invariance along
the interface and that only a single interface exists in the
system. In the above procedure, the transversal width
N varies in the course of the simulation in order to ac-
commodate the interfacial zone. If the interface becomes
very rough or thick the size of the simulation lattice may
become large. Apart from the obvious case of growing in-
terfaces, there is also the general case of stable interfaces
separating regions which converge only asymptotically to
the homogeneous phases (the spatial profile correspond-
ing to a heteroclynic connection between two distinct
fixed points). However, for our CML model this problem
does not arise since the map is superstable [f(u) is con-
stant for « > 1/b], so that the interfacial region remains
strictly finite (see Ref. [7] for the analytical discussion of
the 1D case).

Before entering into a detailed examination of the na-
ture of the interface for a particular range of ¢ values, it
is useful to give a brief survey of the interfacial dynamics.
Regions corresponding to significantly different behavior
are observed as the coupling strength € changes. For this
overview (and throughout the paper unless stated other-
wise) we select W = 3. This is the smallest value of the
width that guarantees nontrivial evolution. In fact, ini-
tially thinner interfaces (W = 1,2) usually give rise only
to stable interfaces of period-three, while larger W values
lead to complex asymptotic dynamics similar to that for
W = 3 [9]. The parameter L plays a more relevant role
in that it controls the amplitude of transverse fluctua-
tions. In the overview we have chosen L = 1000, while in
the following sections the dependence of the dynamical
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properties on L is investigated.

Snapshots of the interface are shown in Fig. 1 for sev-
eral values of €. The color coding is such that increasing
u values from a to 1 correspond to increasing grey levels
from white to black. An examination of the interfacial
dynamics over the range 0.0 < & < 0.25 yields the follow-
ing general picture of the interfacial structures.

(i) For ¢ < 0.13, the interface, after developing
small-scale irregularities during a short, and almost L-
independent transient, freezes in space and does not

propagate.

(ii) When 0.13 < € < 0.16, the interface moves in such
a way that phase C consumes phase A (the other dy-
namical configurations being obtained by cyclic permu-
tations), i.e., with a positive velocity. For intermediate
€ values, the interface exhibits also irregular fluctuations
with a structure similar to that for € = 0.17 described be-
low [cf. the images in Fig. 1(c), which correspond, from
top to bottom, to increasing times]. Near both ends of
this interval the interface emits “gliders.” These gliders

FIG. 1. Snapshots of the interface for various times. Time increases from the top frame to the bottom frame and y increases
from the top to bottom of each frame. The time increment between frames is At. (a) Interface for ¢ = 0.14 emitting gliders
perpendicular to the interface, At = 60; (b) interface emitting gliders at an angle to the interface for € = 0.16, At = 60; (c)
interface moving with negative velocity (A consumes C) for ¢ = 0.17, At = 1200; (d) interface develops deep fissures and long
spikes for £ = 0.188, At = 90; (e) very rough interface that nucleates new homogeneous phases for ¢ = 0.19, At = 300; (f)
interface becomes unstable and grows to consume the two stable phases for ¢ = 0.193, At = 120.



2012

are isolated moving structures that detach from the in-
terface and propagate into the otherwise homogeneous
stable phases. They are similar to the gliders observed
in some cellular automaton rules [10] [cf. Figs. 1(a) and
1(b). Note that only a portion of the L = 1000 inter-
face is shown in these two figures in order to resolve the
structures of the gliders].

(iii) For 0.16 < ¢ < 0.19, the interface moves so
that phase A consumes phase C (negative velocity) [cf.
Fig. 1(c)]. The interfacial dynamics that occurs for
0.17 < & < 0.18 is of special interest in that the interface
is rough and exhibits spatiotemporal complexity but is
rarely fragmented. In this regime we investigate wave
propagation and nucleation processes in a system where
the interface itself exhibits nontrivial dynamics. When
approaching the upper border of the interval, the inter-
face develops various instabilities. For ¢ = 0.188, deep
fissures arise and the third phase is nucleated during the
evolution [Fig. 1(d)]. For € = 0.19 the interface is very
rough with breaking waves that produce “froth” which is
sometimes absorbed by the stable phases but is also able
to nucleate new phases [Fig. 1(e)].

(iv) When € > 0.19 the interfacial region grows to
consume the stable homogeneous phases. Eventually,
the available space is filled by a single disordered phase

[Fig. 1(f)].

III. DYNAMICAL SYSTEMS ANALYSIS

For small values of L the interfacial dynamics can be
characterized in a rather complete way. In particular,
it is possible to study a fairly large ensemble of different
initial conditions and (i) determine the attractors eventu-
ally approached, (ii) estimate the length of the transient,
and (iii) compute the velocity and Lyapunov exponents
of the interface in each regime. For reasons of simplic-
ity, our investigations have been restricted to the value
e = 0.17; however, similar results are expected to hold in
a broad range of parameter values.

We have computed the probability p,(L) that an or-
bit of period n is eventually approached in a lattice of
length L. The periodicity of the attractor was deter-
mined by monitoring the structure of the interface in the
moving reference frame defined in Sec. II. In addition
to the period, the average velocity of the interface is an-
other important indicator allowing for a classification of
the various attractors. The probability p,(L) was deter-
mined by averaging over 500 different realizations for in-
creasing length L up to L = 25. The results for p3 and ps
are reported in Fig. 2 and show that the frequency of oc-
currence of period-three solutions falls rapidly to zero as
L increases, while the probability of period-six interfaces
increases towards unity. The periods of the remaining
attractors are scattered over a very wide range (e.g., up
to n = 4800 for L = 24) without any discernible pattern.
There are a few period-three interfaces: all of them have
a simple, strictly planar structure along the z direction,
parallel to the interface. They can be described by a one-
dimensional coupled map lattice. In contrast, period-six
interfaces exhibit different transverse profiles, as do the
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FIG. 2. Plot of pn(L), the probability of occurrence of pe-
riod n in an interface of length L versus L for n = 3 (open
circles) and n = 6 (closed circles).

interfaces with longer periods. This is consistent with
the qualitative findings of Sec. II. For increasing L, the
interface begins roughening during the transient, so that
it becomes more and more unlikely that a planar struc-
ture will be approached eventually. In a few examples,
gliders are periodically emitted by the interface thus pre-
venting the convergence to a definite shape (mainly for
L = 10, where 15% of the realizations do not appear to
reach stable configurations of the interface).

Although it is obvious that all the attractors eventu-
ally reached are stable, it is not a priori obvious how
their stability varies. A compact illustration of the var-
ious solutions found for L < 25 is provided in Fig. 3
where the maximum Lyapunov exponent A is plotted ver-
sus the velocity of each periodic interface. A few cases are
not represented in the figure since they fall outside the
boundaries. They are (i) two period-three solutions char-
acterized by a fairly large velocity (v = —1/3, v = 1/3)
and (ii) a period-108 solution, characterized by A = —oc.

At this point it is interesting to observe that, despite
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FIG. 3. Plot of the maximum Lyapunov exponent A versus
velocity v of the different periodic interfaces for L < 25.
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the fact that the one-dimensional map f(u) is super-
stable, superstable interfaces in the 2D lattice appear to
be rather exceptional, again contradicting the common
belief that diffusive coupling has a stabilizing effect. In
this sense, we should also mention that an analytic study
of the simplest stationary period-three solution (which
is possible because of its strictly planar structure) shows
that for values of € such that 2¢2b3(1—2¢) < 1 even it be-
comes unstable to infinitesimal perturbations. Another
interesting observation related to the results of Fig. 3
concerns the large number of stationary solutions. In
particular, all the period-six interfaces are stationary, al-
though characterized by different Lyapunov exponents.
Having described the possible asymptotic structures of
the interface, we now wish to analyze the transient be-
havior preceding the collapse onto a periodic solution.
This regime is typically characterized by an irregular
evolution which is reminiscent of the 1D case studied
in [11], where the initial condition was randomly cho-
sen. Therefore, it is important to consider how the av-
erage length of the transient 7(L) scales with the length
L. The average transient time needed to reach a peri-
odic attractor using the same ensemble of realizations
discussed above is reported in Fig. 4, where the loga-
rithm of 7(L) is plotted versus L*2. The plot clearly
shows that 7(L) increases faster than a simple exponen-
tial [namely, 7(L) ~ exp(0.079L3/2)]. This scaling law
is similar to that observed for the transients obtained in
the one-dimensional version of this coupled map model,
where a strictly exponential increase is found, and im-
plies that all studies of the interfacial dynamics for large
L (L > 100) are surely exploring the transient dynamics
rather than the asymptotic attracting states. As noted
in Refs. [12,11] it is this transient dynamics that is most
relevant for systems of this type. The even faster growth
observed in the present case is presumably due to the
transversal structure of the interface. The longer the in-
terface, the thicker it grows. Assuming that the transver-
sal thickness is of the order O(v/L) (see Sec. IV), the
number of sites explored by the interface is of the order
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FIG. 4. Natural logarithm of the average transient time 7
versus L3/2. The solid circles are the simulation data and the
straight line is a fit to the data: log T = 3.354 + 0.079L3%/2.

O(L3/ 2). If, moreover, the evolution is characterized by
short range correlations (again see Sec. IV), the proba-
bility of the collapse onto a periodic orbit is proportional
to the simultaneous occurrence of O(L%/2) almost inde-
pendent events. This gives a heuristic explanation of the
growth rate observed in the numerics of Fig. 4.

Finally, we have computed ensemble averages of both
the velocity and the Lyapunov exponent for relatively
short interfaces (L = 20). The velocity v(t) was deter-
mined by computing the shift that occurred between the
times t—At, t+At (At = 450) and averaging over 10° dif-
ferent realizations. The effective Lyapunov exponent A(t)
was determined in an analogous fashion by computing
the contraction rate for the same time lag. The results
shown in Fig. 5 reveal clearly the presence of two distinct
regimes, both characterized by stationary properties,
connected through a crossover region located at a time of
the same order as the average transient reported in Fig. 4.
Moreover, the “short time” plateaus exhibited by the ve-
locity and the Lyapunov exponent coincide, within the
numerical error, with the temporal averages computed
for longer interfaces (v = —0.0226, A = —0.356). There-
fore, we claim that the transient is characterized by a
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FIG. 5. (a) Effective velocity and (b) Lyapunov exponent
versus the natural logarithm of the time for L = 20.
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stationary, ergodic, length-independent dynamics. It is
precisely this evolution that we shall analyze in the next
section. We conclude by recalling that the “long time”
regime, which appears stationary from Fig. 5, is nothing
but the average over different attractors each character-
ized by its own velocity and stability.

IV. STATISTICAL MECHANICS OF THE
INTERFACE

We shall use the term disordered interface when refer-
ring to interfaces with complex spatial structure such as
those described above for the parameter range 0.17 <
€ < 0.18. The analysis in the following subsections will
be restricted to the case study € = 0.17, except for the
last subsection where the dependence on the coupling pa-
rameter is considered. We compare the properties of our
CML model with those of phenomenological, continuous
models. To avoid proliferation of notation, the symbols
z and t will be used to denote both the continuous and
discrete space and time variables, respectively.

A. Structure and dynamics of the disordered
interface

In this section we introduce the technical tools required
to characterize the interfacial dynamics and discuss the
results of the numerical simulations. The most important
aspect of the dynamics is the evolution of the geometri-
cal structure of the interface. A direct inspection [see,
for instance, Fig. 1(c)] reveals that the two borders (pro-
files) of the interfacial region are described by regular
curves which appear to be essentially single-valued func-
tions of the lattice coordinate = (almost no overhangs are
present). )

We can define the interfacial border h¢(z,t) [ha(z,t)]
as the smallest [largest] y coordinate such that the dy-
namical variable u(z, y, t) differs from the value of the ho-
mogeneous phase C (A4) [13]. Given these definitions, the
local interfacial thickness is A(z,t) = ha(z,t) — he(z,t)
and its mean value is given by

Al) = <%§;A(x,t)>, (4)

where (-) denotes average over independent realizations,
and 1 Y- is the space average. Numerical simulations
show that A(t) = 4.0 with a standard deviation oa = 2.5,
almost independent of ¢ and L. Such a small thickness
implies that, for sufficiently large length scales, the inter-
facial region can be approximated by a 1D curve and, for
practical purposes, described by either of the two bor-
ders. Henceforth we select hc(x,t) to be the profile and
we denote by h(z,t) its value measured in a reference
frame where the center of mass of the profile is at rest
(the subscript will be restored when referring specifically
to one of the borders).

A natural description of the spatial structure of the
profile is provided by the correlation function

L
C(z,t) = <% Z[h(z:' +z,t) — h(:t',t)]2> . (5)

z'=1

A computation of this quantity was performed for L =
200, choosing the initial condition in (3) [i.e., h(z,t =
0) = const]. The results, reported in Fig. 6, show that
correlations grow with time until an asymptotic parabolic
curve is approached. The asymptotic form of the corre-
lation function can be reproduced by assuming that the
profile is a spatial Wiener process described by the diffu-
sion equation [14]

8p(h,$|h0,1‘0) _ sz(h,m|h0,zo)
oz =D Oh? (6)

for the conditional probability p(h,z|ho,zo)dh that the
profile value is in [k, h + dh] at site z, given the initial
condition h(zo) = ho. Here D is a phenomenological
diffusion coefficient. The solution of (6) is

1

= ~(h—ho)?/aD(e—=0) _ (7)
47D(z — zo)

p(h,-’l?lho,{llo) =

In our case, in view of the periodic boundary conditions,
we need to consider processes that return to hg after L
steps. By including this constraint and setting, without
loss of generality, hg = 0 and zo = 0, the resulting con-
ditional probability density P(h,z) is

P(h,.’L') — 1 e—th/4Dz(L—z) . (8)
4nDz(L — z)/L
The Wiener-process model for the correlation function
Cw (z) is then given by

2D

Cw(z) = /;00 dhh®*P(h,z) = T:B(L —z). (9)

25 T T

Cl(z,1)
10| 7

0 . . .
0 50 100 150 200

T

FIG. 6. Correlation function C(z,t) versus  for ¢ = 0.17 at
different times. The closed circles (which appear to be heavy
solid lines) are the simulation data and the light lines are
the theoretical curves obtained from the Edwards-Wilkinson
model (27). Starting from bottom to top, the curves are for
times t = n x 300 with n = 1,...,6, while the topmost curve
is for t = 12 x 300. The open circles are the theoretical
asymptotic value (28) of this correlation function.
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By choosing D ~ 0.25, the theoretical curve (9) repro-
duces the numerical data very well (cf. Fig. 6). This re-
sult indicates an unexpected stochastic behavior in space
of our Lyapunov-stable deterministic CML system.

A further check of this simple stochastic model can be
carried out by computing P(h), the asymptotic proba-
bility distribution of interfacial heights, regardless of the
value of the position along the interface,

L
ph) =2 / dzP(h,z) . (10)
L Jo
Using the same value of D specified above, a comparison
of this expression with the CML data is presented in
Fig. 7; excellent agreement with the simulations is again
obtained.

In order to gain further insight into the dynamics of
the interface it is useful to analyze the evolution of the
Fourier modes of the profile. We define the Fourier trans-
form of h(z,t) as

L
7 1 tkx
hi(t) = 7 Z h(z,t) (11)
and let

Mi(t) = (e ()?) (12)

denote the average square amplitude of the kth Fourier
mode. In view of the periodic boundary conditions we
have k = 2an/L withn =-L+1,...,0,...,L —1. In
Fig. 8 we plot k2LM;(t) versus k?t for several values of
k # 0. The data for different modes lie on a single curve.
This data collapse represents the starting point for the
construction of a macroscopic model, discussed at length
in Sec. IV B. The case k = 0 requires a separate analysis
since, in contrast to the other mode amplitudes which
eventually saturate, My (t) grows linearly with time. This
result indicates a temporal diffusive behavior which can
be characterized by a second phenomenological diffusion

0.15 r

P(h)

0.05

0.0
-20 -10 0 10 20

FIG. 7. Probability distribution P(h) versus h for e = 0.17.
The solid circles are the simulation data for four different
times while the solid line is the theoretical result obtained
from (10).
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k2%t

FIG. 8. Plots of k2LMjy(t) versus k®t for ¢ = 0.17. The
different symbols refer to data for three values of the wave
number k with indices n = 1,3,5. The solid line is the theo-
retical result from (22).

coefficient T'; a fit of the numerical data gives I = 0.2.

Thus far, we have considered the geometrical proper-
ties of the interface, described as a 1D curve. There are
at least two other quantities which characterize the inter-
face: the state variable u(z,y,t) along the profile and the
thickness A(z,t). It is interesting to study their asymp-
totic spatial correlations.

The nature of correlations in the dynamical variable u
in the interfacial region can be described in the follow-
ing way. We let @(x,t) be the average value of u(z,y,t)
within the interfacial zone at position = and time ¢:

ha(z,t)

a(z,t) = Az, t)™ )

y=hc(z,t)

u(z,y,t) (13)
and define the correlation function of # as

< Z& (z' + z,t)du(z’, t)>
<%§::1(6a(w,t))2>

Cr(z,t) =

where

L
§a(z,t) = a(z, t) — < % ; a(z, t)> . (15)
For increasing times, Cy(z,t) rapidly converges to the
asymptotic form plotted in Fig. 9. It is seen that corre-
lations in @ decay to zero in about seven lattice units.
In an analogous fashion, we define the spatial correla-
tion function for the interfacial thickness A(z,t) as

<% EL: SA(Z + z,t)0A(<, t)>

CA(wat) = =z =l

<%}LL;1 [6A(z,t)] >

» (16)
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FIG. 9. Plot of the correlation function C(z,c0) versus z
for € = 0.17. Averages have been performed over 10° realiza-
tions.

where §A(z,t) = A(z,t) — A(t). The results of a numer-
ical computation of the asymptotic correlation function
are reported in Fig. 10 and again show a fast decay of
correlations (about ten lattice units).

All of these results obtained for a variety of different
observables confirm that the interface behaves stochas-
tically even over relatively short space and time scales.
The construction of a coarse-grained model accounting
for all of these features is a difficult task. In the fol-
lowing subsection, we limit ourselves to a comparison of
the geometrical structure of the interfacial profile with
known phenomenological models.

B. Macroscopic model

To model the complex deterministic dynamics of the
interfacial profile, we suppose that h(z,t) evolves in time
due to three main mechanisms: (i) propagation with ve-
locity v along the y direction, (ii) diffusion with an effec-
tive coeflicient D along the z direction which acts like a
surface-tension term that tends to remove surface rough-
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FIG. 10. Plot of Ca(z,00) versus « for e = 0.17. Averages
have been performed over 10® realizations.

ness, and (iii) a random force accounting for the coupling
with the remaining degrees of freedom [e.g., u(z,y,t)].
We stress that this noise term is self-generated and re-
sults from the nonlinear dynamics of the randomly ini-
tialized interface.

The simplest equation which incorporates the above
mechanisms and accounts for the scaling behavior re-
ported in Fig. 8 is the Edwards-Wilkinson (EW) equation

(4]
Oh(z,t) Dazh(m,t)
at Ox?

+v+€&(x,t), (17)

where v is the velocity of the interface. The noise term
&(z,t) is taken to be a Gaussian white-noise process with
zero mean value and correlation function

(é(z,t)€(2’,t")) = 26(z — 2")o(t — t') (18)

where for consistency I is the same coefficient introduced
in Sec. IVA. If we make the replacement h(z,t) —
h(z,t)+vt, (17) becomes, in the moving reference frame,

Oh(z,t) Dazh(m, t)

o 2 e (19)

This equation can be Fourier transformed defining

L
ha(t) = % /O dzet*<h(z, 1) (20)

and solved to give

izk(t)ze_Dk2tizk(0)+/ dt'e DK (=g (') . (21)

0

In view of the choice of the initial condition h(z,0) = 0,
the expression for the square amplitude of the modes
M;, (t) is

My (t) = % (1 - e‘Zk’Dt) . (22)

This relation satisfies the general scaling ansatz made for
rough interfaces [15]

My (t) ~ k= (%29 F (/P (23)

by fixing o = 1/2 and 8 = 1/4, which are the known
values for the EW model. The data collapse obtained in
Fig. 8 can now be interpreted as the verification of this
scaling behavior. Moreover, the two phenomenological
parameters D and I' can be extracted from the initial
slope and the asymptotic value of My(t),

dM;(t) oT
TR — 24
( dt )t 0 L ’ ( )
, T
Jim Mi(t) = 557 (25)

and we find D = 0.4 and I" = 0.2. The theoretical expres-
sion (22) with these parameter values (solid line in Fig. 8)
is in excellent agreement with the numerical data. Notice
that the value of I coincides with the estimate obtained
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in Sec. IV A from the evolution of Mo(t).
The continuum version of the correlation function de-
fined in (5)
1 (L
%w@o=5/dﬂmwﬁ%_ww+@mmum
0
(26)

may also be computed directly from (19). After substi-
tution of the solution of (19) into this equation we find

— A4I'L
Cew(z,t) = HX::I D(amn)? [1 — cos(2mnz/L)]
% (1 _ e—z(zm)’m/L’) ’ (27)
whose asymptotic value is

g%dL—@. (28)
This expression is equivalent to (9) if one makes the iden-
tification

Cew(z) = lim Cpw(z;t) =

_ L
!

Inserting the numerical values of I' and D we recover
the previous estimate of D. To conclude this analysis,
we have also compared the time-dependent expression
(27) with our CML model, without any further fitting.
The solid curves in Fig. 6 again agree very well with the
numerical data.

Finally, for the sake of completeness, we have per-
formed the analysis described in Sec. IV A for the lower
border h4(z,t). If we still use the above-determined val-
ues of I and D, we find that the agreement with the nu-
merical data has slightly deteriorated. For instance, the
theoretical estimate Cgw(z,t) is systematically larger
than the observed correlation C(z,t). More precisely,
the difference 6C(z,t) = Cgw(z,t) — C(z,t) is nearly
constant in space and time, except for small regions near
z=0and z =L.

This is not a surprising result if one considers that
ha(z,t) = h(z,t) + A(z,t), so that the statistical prop-
erties of the lower border derive from the linear com-
bination of an EW process and the thickness fluctua-
tions of the interface. We have verified numerically that
the autocorrelation of A(x,t) decays rapidly not only in
space, but also in time and that the cross correlation
of A(z,t) with h(z,t) is negligible, so that C(z,t) =
Cew(z,t) + 0%, a result consistent with the numerical
findings. The different behavior exhibited by the two
profiles stems from a nonzero velocity of the interface
that breaks the symmetry between them. Accordingly,
what is a posterior: surprising is that the upper profile
hc(z,t) appears to be a pure EW pracess.

(29)

C. Finite-size effects

For increasing values of the coupling parameter € in
the interval (0.17, 0.18), a direct inspection of the inter-
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face borders shows the presence of an increasing number
of overhangs. However, a quantitative analysis reveals
that the density of overhangs per unit length remains so
small (a few percent) that their effect can be neglected.
Moreover, most of the features of the disordered inter-
face discussed in Sec. IV A are still present. In particu-
lar, A and oz remain bounded to a few lattice units and
Cr(z,t) as well as Ca(z,t) decay rapidly to zero. As a
consequence, one can maintain the previous definition of
the interfacial profile and analyze its time evolution.

The square amplitudes M (t) of the Fourier modes,
plotted using the same scaling transformation adopted in
Fig. 8, do not exhibit a good data collapse (see the case
€ = 0.175 in Fig. 11). This disagreement with an EW-like
behavior cannot be attributed to additional fluctuations
of the interfacial thickness. In fact, the presence of such
a stochastic contribution would lead to a spreading of the
data in a direction opposite to that observed in Fig. 11.
In view of this result one is led to consider more refined
phenomenological models including nonlinear terms, and
finite-size effects.

A widely used model that has been introduced to ac-
count for nonlinear contributions is the Kardar-Parisi-
Zhang (KPZ) equation [5]

oh 9h v (8h\?
o oz + 2 (6_:::) +&(z,t) , (30)

where £(z,t) is the Gaussian process already defined in
(18). This equation differs from the EW model in the
moving reference frame only by the presence of the non-
linear term proportional to the velocity of the front.

We first discuss why these nonlinear corrections are
irrelevant for € = 0.17. According to the argument given
in [16], one can estimate the critical length scale L, above
which the nonlinearity starts to play a relevant role as

_ 152 D3

L* - _’UT . (31)
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FIG. 11. Plots of kLM (t) versus k*t for € = 0.175. The

different symbols refer to data for five values of the wavenum-
ber k with indicesn =1,...,5.
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Substituting the numerical values of the various param-
eters for ¢ = 0.17, we obtain L, ~ 80000, a value much
larger than the actual length of the interface chosen in
the simulations (L = 200). If one could iterate suffi-
ciently long interfaces, a crossover towards the behavior
of the KPZ equation, characterized by the critical expo-
nents a = 1/2 and 8 = 1/3, should be observed; however,
this is beyond the present numerical facilities.

A scaling analysis performed for ¢ = 0.175 [hence-
forth the analysis will be confined to this parameter value
which typifies the behavior in the interval (0.17,0.18)] re-
veals that the estimates of a and 3 are still much closer
to the EW values than to the ones of the KPZ equa-
tion. Given these results, it is reasonable to conjecture
that the breakdown of the EW model, observed over
the available length scales, can be explained in terms
of finite-size corrections. In particular, this can be ob-
tained by (i) adding higher-order derivatives in (19) or
(ii) relaxing the J-correlation assumption of the stochas-
tic term. The leading correction from (i) is, on sym-

metry grounds, 'le%;—’}. The effect of this term can be
described as a dependence of D on the wave number &
in Fourier space [D — D(1 + v,k?%)]. The simplest way
to take into account spatial correlations is to assume a
Lorentzian profile for the power spectrum of the noise,
i.e., ' = I'/(1 + v2k?) (this is equivalent to assuming a
finite spatial correlation length . = 2m,/73).

The combined effect of these two hypotheses modifies
(22) to

r
My (t) =
k() DE2L(1 + 11 k?)(1 + v2k2)
% (1 _ e—2k2D(1+~nk’)t) ] (32)

A very good data collapse is obtained plotting M (¢)(1+
11k2)(1 + v2k?)k? versus (1 + y1k?)k?t, for v; ~ 0 and
~v2 =~ 9 (see Fig. 12). As a consequence it is sufficient to
invoke a spatial correlation length . of about 19 lattice
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FIG. 12. Plots of G(k,t) = Mw(t)(1 + v1k%)(1 + y2k?)k?
versus (1 + v1k?)k?t for € = 0.175. The symbols are defined

as in Fig. 11, while the solid line is the theoretical result from
(32).
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units in the (deterministically generated) noise term to
account for the scaling behavior of the disordered inter-
face. We can now evaluate the phenomenological param-
eters finding I' = 0.35 and D = 0.36. The theoretical
curve obtained for these values (solid line in Fig. 12) fits
the data quite well.

We are now in a position to determine the relevance
of the KPZ nonlinear term. From (31), and considering
that v = —0.0386, the critical length scale turns out to be
L, =~ 7000, that is, definitely shorter than for ¢ = 0.17,
but still much larger than the length of the interface (L =
200).

Further numerical analyses show that the effect of non-
linear terms remains negligible for increasing e, while
finite-size corrections increase. This is consistent with
the observation that a different dynamical phase is found
when € aproaches 0.19. Beyond this value fragmentation
effects dominate the dynamics of the disordered interface,
supporting the hypothesis of a dynamical phase transi-
tion to a different regime where the finite-size corrections
become relevant over all length scales.

V. NUCLEATION AND GROWTH DYNAMICS

The planar interfacial geometry discussed above is the
simplest context in which to carry out studies but, in gen-
eral, curvature effects come into play and must be consid-
ered in order to obtain a more complete understanding
of the system’s dynamics. Most of the information con-
cerning such effects can be obtained from a study of the
dynamics of a single disk-shaped nucleus of a given ho-
mogeneous phase embedded in the sea of another homo-
geneous phase. More precisely, we study its growth rate
and determine the critical radius for ¢ = 0.17 and 0.175.
An general continuum model of the nucleation process is
the polar-coordinate version of the KPZ equation. The
corresponding stochastic differential equation is derived
in the Appendix [see (A5)], starting from a general model
written in a coordinate-independent representation [17].
In the Appendix, using the parameter values determined
in Sec. IV, we also estimate the average size of angular
fluctuations [see (A12)] which, for e = 0.17 and 0.175,
turn out to be very small. As a consequence the model,

;05:—2-+—U+i (33)

P v

should be sufficient to describe the evolution of a single
nucleus. Here p and £ are the n = 0 components of the
Fourier expansions in the angular degree of freedom of
the interfacial profile and random force, respectively (cf.
the Appendix).

Since a generic nucleus with initial radius p can either
grow or collapse, it is useful to introduce the probability
density Q¢ (p,t) for the stochastic process describing the
nucleus dynamics to be absorbed at time t in py > p.
This probability is known to satisfy the backward Kol-
mogorov equation [14]

9Qs _
ot

0%Qy
dp?

Qg
dp

+1(p) 7 (34)

F(p)
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where F(p) = —D/p + v and I(p)

ization condition is

= I'/np. The normal-

[)  Qs(prt)dt = Py(p) - (35)

The probability Pg(p) for the process to be eventually
absorbed in py is given by [18]

” dr o1 36
ro- [ we/ [ w (36)
where
W (r) = exp / lf‘(p) dp| . (37)
L(p)
The mean first-passage time is then defined by

T(p,ps) =

1 oo
— tQ¢(p, t)dt. 38
5 [ t@re (38)
Multiplying (34) by ¢t and integrating over t one obtains

a differential equation for T':

% (TPy)
p?

T Py)

F(p) 252 1 ) P (3)

By integrating (39) with the boundary conditions
T(pg,pf) = 0, T(0,pf) < oo, one obtains (see [19] for
a detailed discussion)

“(xia)

x/(; W(r)/ I‘,():’I; )dr'. (40)

Using these tools we are now in the position to compare
the stochastic model with the CML dynamics. Before en-
tering into the details of this comparison, we first consider
the dependence of the velocity of the planar interface on
its orientation with respect to the lattice. The maximum
deviation is expected for an orientation +m/4 in which
case we find v = —0.0201 and —0.0382 for € = 0.17 and
0.175, respectively. Both values are close to the veloci-
ties estimated in Sec. IV (v = —0.0226 and —0.0386),
although slightly smaller. Thus an isotropic model such
as that described above should be able to provide a good
representation of the observed evolution.

In analogy with the planar case, the randomly initial-
ized interface is chosen to be an annulus with an external
radius 7o and a thickness corresponding to three lattice
units. Phase A covers the disk interior to the annulus,
which is surrounded by phase C. Snapshots of the evo-
lution for one realization of the disk growth are shown in
Fig. 13 for € = 0.17. One can see that the disk deforms as
it grows, although its shape remains circular on average.
In this figure one may also observe that the interface it-
self exhibits a structure considerably more complex than
that seen in the planar geometry discussed in Sec. IV for

this parameter value. Thus the curvature for small radii
induces additional interfacial structure.

In order to perform a quantitative analysis, the inter-
facial profile r(s,t) is defined as the border of phase C.
Here s parametrizes the profile. Due to the fluctuations

FIG. 13. Snapshots of the growth of a nucleus for € = 0.17
for three times between ¢ = 90 and ¢ = 3600.
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of the disordered interface it is useful to introduce the
mean radius

p(t) = 5 Y Ir(at) = <(0)] (41)

where c(t) = 5 Y, r(s,t) is the center of mass of the

profile and N, is the number of sites in the profile.
Following the methodology sketched above, the study
of the interfacial dynamics was carried out by measuring
the first-passage time of p(t) through a set of preassigned
thresholds. The statistical analysis was performed by
averaging over many independent realizations with the
same initial value of the radius r¢. A particular realiza-
tion may either collapse to zero after some finite time
or grow indefinitely. For this reason we have also deter-
mined the fraction of realizations Py that pass through
the threshold py¢, along with the mean first-passage time
T. In Fig. 14 we plot T versus py for different values
of rg. The time origin is suitably chosen to show the
superposition of the various curves. This is a direct con-
firmation that a single, stochastic, first-order, differential
equation is sufficient to describe the dynamical behavior
of the nucleation process. The same is not true at early
times since each configuration needs some finite time to
reach a “typical” disordered state. This relaxation pro-
cess is characterized by a growth of the initial radius
by two lattice units in the first few time steps. The corre-
sponding part of the curves has been discarded in Fig. 14.
The comparison of the numerical results with the theo-
retical expression (40) (solid lines in Fig. 14) shows good
agreement almost everywhere for € = 0.17, while signifi-
cant deviations are observed at small radii for ¢ = 0.175.
This is further confirmed from measurements of the crit-
ical radius r. defined as the initial radius of a nucleus
characterized by a probability 1/2 to eventually grow
[20]. From (36), we obtain r. ~ 18 and 9 while from
the numerical data r. ~ 19 and 12 for ¢ = 0.17 and
0.175, respectively. The disgreement in the latter case
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15 25 35 45
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FIG. 14. T versus ps for ¢ = 0.17 (a) and 0.175 (b) for
different values of ro. The time origins for the various cases
are suitably translated to superpose the data. The theoretical
results obtained from (40) are shown as solid lines.
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cannot be explained by invoking strong finite-size correc-
tions which would be inconsistent with the results found
for the planar interface. Therefore, the observed disgree-
ment can only originate from effects due to the finiteness
of the lattice spacing.

VI. CONCLUSIONS AND PERSPECTIVES

We have demonstrated in this study that simple, de-
terministic, spatially extended systems whose attrac-
tors are strictly periodic can exhibit complex, long-lived
transients with interesting interfacial structure which is
stochastic in nature. The transient regime depends su-
perexponentially on the system length L and thus it is
the transient dynamics that is most relevant for all but
the smallest system sizes. The interfacial dynamics of
this transient regime can be characterized and modeled
by simple stochastic equations, indicating that the deter-
ministic nonlinear dynamics is able to mimic the effects
of noise.

The interfacial dynamics is very rich and models of
this type can serve as paradigms for the study of com-
plex interfaces with structures reminiscent of those that
arise in physical systems through different mechanisms.
The CML model can serve as a testing ground for phe-
nomenological models of interfacial dynamics whose form
is based on general physical elements rather than details
of a specific system. The investigations presented in this
paper constitute a beginning of research in this direction.

The work presented above focused on the interface be-
tween two phases in both the planar and disk geometries.
Studies of this type constitute an important element in
the understanding of oscillatory media; however, even in
our simple system with period-three local maps, one must
in general consider the competition among three phases.
We noted above that in certain parameter regimes the in-
stabilities in the interface separating two phases can give
rise to the nucleation of the third phase. In fact, starting
from random initial conditions, the generic state of the
system will consist of a competition among patches of
the three phases, each consuming the other [8]. Three-
phase coexistence implies the existence of point defects
where all three phases meet. Such defects can serve as
the source of spiral waves, which in some circumstances
may break up to yield new defects. An example of spiral
wave evolution and breakup in our model for ¢ = 0.18
is shown in Fig. 15. Stable spiral waves are obtained for
€ = 0.17. Defect creation and destruction processes of
this type may give rise to defect-mediated turbulence, a
common scenario for spatiotemporal chaos in oscillatory
media [21]. Our CML model can be used to study such
chaotic states in a simpler context than the commonly
employed complex Ginzburg-Landau models.

Finally, we stress that many aspects of the complex in-
terfacial dynamics exhibited by this coupled-map model
remain to be investigated, for example, the nature of the
instability giving rise to the glider phases and the char-
acterization of the interfacial thickness growth that leads
to the ultimate destruction of the interface for large €.
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FIG. 15. Spiral wave dynamics and breakup initiated by
the existence of a point defect where all three phases meet.
The simulations were carried out on a 200 x 200 lattice with
no-flux boundary conditions for ¢ = 0.18. From top to bot-
tom, the frames are for t = 2700, t = 3600, and t = 4500,
respectively.
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APPENDIX

A general phenomenological description of interfacial
dynamics that accounts for nonlinear contributions and
overhangs has been proposed recently in Ref. [17]. The
interface r(s,t) = (z(s,t),y(s,t)), parametrized by the
continuous variable s, is assumed to satisfy the equation

or(s) _ —1/2 9 ~1/2 9 -
5 = Dg 59 8Sr(s) +vn+n, (A1)
where g = |dr/ds|? and the correlation function of the

random force 7 is
(na(s,t)na(s',t')) = 2Mbagg™1/?8(s — s")o(t — t') . (A2)

This choice of the correlation guarantees that (Al) is
independent of the parametrization adopted. In [17], it
was shown that, in the no-overhang approximation and
to first order in the nonlinear corrections, (A1) reduces
to the KPZ equation (30).

In order to study the nucleation problem it is use-
ful to refer to a polar coordinate system z(s,t) =
p(s,t)cosb(s,t) and y(s,t) = p(s,t)sinb(s,t). In this
representation, g = p% + p202, where the subscript s in-
dicates differentiation with respect to this variable. As-
suming in (A1) that there are no overhangs, i.e., p(s,t) =
p(8,1), a straightforward but lengthy calculation yields

op(6,1) 1 8 1 9
=D = 2 o(8,t
81‘, \/p(29+p289\/p5+p280p( ’ )
D (1 L Paleg = PPee))
P (p§ + p?)?

v/ (pf +p*)"/*
+—y/pE+p2+ T g(0,t), (A3
SVPate S ¢, (A3)

where the random force term has correlation function

(£(8,8)E(0',t")) =2I'8(0 — 0")6(t —t') . (A4)

If we further assume pg/p < 1, we obtain the analog of
the KPZ equation for the disk growth problem:

2
% D% D,
p

2
Pe 1
1 0,t). (A5
O " )+ _€(0.1). (A9)

2p2 N/

Even neglecting the KPZ-like term, (A5) remains intrin-
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sically nonlinear and the Fourier analysis cannot lead to
an exact solution as for the EW model. Nevertheless, one
can still extract information on the angular fluctuations
by means of a perturbative analysis. By substituting

+o0
p(6,t) = Y pu(t)e™ (A6)
and
+o0 )
£06,t) = ) én(t)e™ (A7)

n=—oo

in (A5) with (£,(t)¢.(t')) = L4(t — ¢') and multiplying
both sides by p?, one can formally obtain a hierarchy of
stochastic differential equations. This set of equations
refers to a fixed reference frame; however, in the study
of the nucleation process it is necessary to determine the
radial variable with respect to the actual position of the
center of mass. The choice of such a reference frame
amounts to setting p;(t) = const = 0. Accordingly, the
leading corrections to pg(t) originate from p4o(t). In this
perspective one can truncate the hierarchy of equations
at n = +2. Keeping only the leading terms in the equa-
tions for po(t), p+2(t), we obtain

KAPRAL, LIVI, OPPO, AND POLITI 49

papo + 2p2p—2p0 + 2p2p0p-2 + 2p—2p0P2
= —Dpo + v(p; + 6p2p—2)

w60+ 326050 00 ) (ay)
and
Pobx2 + 2p+2p0po = —5Dp1s + 20popiz + pg/zﬁiz .
(A9)

By neglecting any angular dependence (i.e., the depen-
dence on {42 and pi2), (A8) reduces to

Po = b +v+ Lo
0 Po \/p—o )
which gives the zeroth-order estimate for the critical ra-
dius r. = D/v.
By substituting (A10) in (A9) and neglecting higher-
order terms, we obtain

(A10)

pia= —3DPE2 4 S22 (A11)

Po V/Po
By substituting pg = r. in this equation, one can estimate
from the resulting Langevin equation the relative size of
the angular fluctuations:

(Pzztz) _ I'v

r2  3wD?’

(A12)
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FIG. 13. Snapshots of the growth of a nucleus for € = 0.17
for three times between ¢t = 90 and ¢ = 3600.



FIG. 15. Spiral wave dynamics and breakup initiated by
the existence of a point defect where all three phases meet.
The simulations were carried out on a 200 x 200 lattice with
no-flux boundary conditions for ¢ = 0.18. From top to bot-
tom, the frames are for ¢t = 2700, t = 3600, and ¢ = 4500,
respectively.



